
Regeneration Characterization from  

Remote Sensing 

 

INTRODUCTION 

HIGHLIGHTS 

Remote sensing technologies such as satellite images and Light Detection and 

Ranging (LiDAR) have been used for a few decades in the field of forestry to 

compute different forest characteristics (Franklin 2001).  However, forest attrib-

utes derived from remote sensing are mostly related to overstory due to the 

interference of canopy foliage on the detection of understory vegetation.  Be-

cause of this, only a couple of studies have been done to characterize regenera-

tion from remote sensing.  Furthermore, they have been done mainly in areas 

with a low canopy cover. 

On the other hand, the integration of two sensors (satellite or aerial images and 

LiDAR) has demonstrated to be more accurate than the utilization of only one 

sensor in the estimation of overstory tree attributes (Zald et al. 2014; Imang-

holiloo et al. 2019).  However, a very few studies have assessed regeneration 

using combination of satellite or aerial images and LiDAR.  Moreover, these 

studies have also been primarily conducted in areas with a low canopy cover 

(Su and Bork 2007; Korpela et al. 2008; Martin-Alcon et al. 2015). 
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• Models were created to estimate sapling density of 1) all species and 

2) commercial species with an accuracy of +/- 2822 st/ha for all species 

and +/- 2807 st/ha for commercial species using LiDAR and environ-

mental variables. 

• LiDAR metrics alone are enough to have accurate estimates of sapling 

density. 

• Canopy cover impacts the estimation of sapling density when using 

Sentinel-2 images along with environmental variables, but not when 

using LiDAR and the integration of LiDAR and Sentinel-2 images. 
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The aim of this study was to create models to estimate regeneration density from remote sensing and un-

derstand the impact of canopy cover on the accuracy of the models.  We also wanted to test if the inte-

gration of two sensors (satellite images and LiDAR) was more accurate than only one sensor. 

METHODOLOGY 

Field data 

We calculated sapling (stem with a height ≥ 1 .3 m and a DBH ≥  1 cm and ≤ 9 cm) density (st/ha) of 1) all 

species and 2) commercial species from the Continuous Land Inventory (CLI) plots from New Brunswick 

(n=813). 

 

Sentinel Images 

We used the four bands (blue, green, red and near-infrared) and the ARVI, EVI, NDVI and VARI index from 

Sentinel-2 images (10m x 10m resolution) obtained on July 1st 2016, July 9th 2017 and July 21st 2018.  

 

LiDAR 

LiDAR data was acquired during the summers of 2016, 2017 and 2018 at a point density of 6 points/m2. 

We calculated LiDAR metrics for each plot using the package lidr in R (Table 1). 

 

Site characterization 

We estimated canopy cover of each plot using the proportion of LiDAR points over 7 m which is corre-

sponding to the mean height of sampling.  We also calculated the basal area of trees with a DBH ≥  9.1 cm 

for each plot and the proportion of hardwood and softwood species based on basal area.  We character-

ized sites using aspect and hillshade, ecoregion, ecodistrict and ecosite, the biomass growth index (BGI), 

depth to water table, soil type, and an index of site quality per species. 

 

Statistical analyses 

We built three models using random forest regression for each dependent variable (absolute density of 

sapling of 1) all species, and 2) commercial species).  The first model included LiDAR metrics, spectral vari-

ables (bands and vegetation index) derived from Sentinel-2 images, and environmental variables, the sec-

ond only LiDAR metrics and environmental variables, and the third included only spectral variables, and 

environmental variables.  We selected variables in each models using the VSURF package in R based on 

their importance.  We then calculated root mean square error (RMSE) with the random Forest package 

and obtained pseudo R-squared values were calculated with internal values of mean square error (MSE) 

and pseudo R-square of each tree respectively.  Finally, to test the impact of canopy cover on the accuracy 

of all the models, we performed a Kruskal-Wallis test on the relative errors ((predicted-actual)/actual) of 

four different categories of canopy cover (low: 0 to 24%, medium: 25 to 49%, high: 50 to 74% and very 

high: ≥ 75%).  Following the Kruskal-Walllis test, if significant, a Dunn test was done using the Bonferonni 

method to adjust the p-values. 
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Variables selection and model accuracy 

The estimation of sapling density of all species 

is more accurate than of commercial species 

despite the sensor used (both or only one: Ta-

ble 2).  Moreover, the models using the Senti-

nel-2 images are less accurate than the ones 

using LiDAR or both sensors and the accuracy 

of the models using LiDAR or both sensors is 

similar no matter the species group estimated 

(Table 2).  

RESULTS 

Table 1: LiDAR metrics used to estimate sapling density 

Abbreviation Description 

Zmax Maximum height 

Zmean Mean height 

Zsd Standard deviation of height distribution 

Zskew Skewness of height distribution 

Zkurt Kurtosis of height distribution 

Zentropy Entropy of height distribution 

Pzabovezmean Percentage of returns above zmean 

Pzabove2 Percentage of returns above 2m 

Zqx X percentile of height distribution 

Zpcumx Cummulative percentage of return in the xth 

layer according to Wood et al. 2008 

itot Sum of intensities for each return 

Imax Maximum intensity 

Imean Mean intensity 

Isd Standad deviation in intensity distribution 

Iskew Skewness of intensity distribution 

Ikurt Kurtosis of intensity distribution 

Ipground Percentage of intensity returned by points clas-

sified as ground 

ipcumzqx Percentage of intensity returned below the xth 

percentile of height 

Pxth Percentage sth returns 

pground Percentage of returns classified as ground 

 

The integration of both sensors 

(LiDAR and Sentinel-2 images) in-

creases the estimation accuracy of 

sapling density compared to Senti-

nel-2, but not to LiDAR. 
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In regards to the variance explained, estimations of sapling density of all species yield higher pseudo R-

squared than of commercial species (Table 2).  Furthermore, the integration of both sensors increased the 

variance explained for commercial species estimation where it is similar to LiDAR when estimating sapling 

density of all species (Table 2).  Again, the models using Sentinel-2 images have the lowest pseudo R-

squared despite the species group estimated (Table 2). 

 

Some variables have been selected in almost all the models no matter the group of species estimated.  

Basal area of trees of DBH ≥ 9.1 cm, the higher quantiles of LiDAR height distribution (zqX), the proportion 

of LiDAR points near the ground (zpcum1), the percentage of LiDAR points over 2m (pzabove2) as well as 

the percentage of LiDAR points over the mean height have been selected in almost all the models.  Predic-

tions of sapling density of all species are higher when basal area and the value of the higher percentiles of 

height distribution are low, and contrarily the predictions are higher when the proportion of points above 

2m is higher (Figure 1). 

Candidate model Variables selected RMSE Relative  Pseudo 

  (st/ha) RMSE (%) R-squared 

Sapling density of all species 

LiDAR + Spectral +        Zq80 + zq85 + zq75 + zq70 + zq60 + zqcum1 + zq55+ pzabove2 + 2807 82 0.34 

LiDAR + Environmental Zq80 + zq85 + zq75 + zq70 + zq60 + zpcum1 + zq95 + zq55 + 2822 83 0.33 

Spectral + Environmental Basal area 3321 97 0.08 

Saplling density of commercial species 

LiDAR + Spectral +        

Environmental 

Zq80 + zq75 + zq85 + zq90 + zpcum1 + pzabove2 + zq65 + zq95 

+ zq60 + zq30 + zq55 +zmean + zpcum2 + pzabovezmean + p1th 

2724 97 0.27 

LiDAR + Environmental Zq80 + zq75 + zq85 + zpcum1 + zq90 + pzabove2 + zq70 + zq30 2807 100 0.22 

Spectral + Environmental Proportion of hardwood + basal area + EVI 3314 118 -0.09 

Table  2: Candidate models, variables selected, RMSE (st/ha), relative RMSE (%) and pseudo R-squared of models esti-
mating sapling density of all species and commercial species using LiDAR metrics and/or spectral variables and envi-
ronmental variables. 



Page  5 

 

Impact of canopy cover 

The relative errors of the models using only spectral and environmental variables are increasing with in-
creasing canopy cover, although only the model estimating sapling density of all species is yielding signifi-
cantly higher relative errors under a very high canopy cover than under a low and medium canopy cover 
(Figure 2 and 3). 

Figure 1: Partial dependence plot of basal area 
(m2/ha), 80th percentile of height distribution 
(zq80; m) and proportion of LiDAR points above 
2 m (pzabove2; %) for random forest predictions 
of sapling density of all species (st/ha) using both 
sensors. 
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Figure 2: Distribution of the relative error (%; er-
ror/actual) according to canopy cover category 
(Low: 0 to 24%, Medium: 25 to 49%, High: 50 to 
74% and Very high: ≥ 75%) for models estimating 
sapling density (st/ha) of all species a) model in-
tegrating both sensors, b) model including LiDAR 
and environmental variables and c) model inclu-
ding spectral and environmental variables 
(Kruskal-Wallis test, a) p = 0.25, b) p = 0.92, and c) 
p = 0.005). 

Figure 3: Distribution of the relative error (%; er-
ror/actual) according to canopy cover category 
(Low: 0 to 24%, Medium: 25 to 49%, High: 50 to 
74% and Very high: ≥ 75%) for models estimating 
sapling density (st/ha) of commercial species a) 
model integrating both sensors, b) model inclu-
ding LiDAR and environmental variables and c) 
model including spectral and environmental va-
riables (Kruskal- Wallis test, a) p = 0.85, b) p = 
0.99, and c) p = 0.11). 



Page  7 

DISCUSSION 

Variables selection and model accuracy 

The higher accuracy and variance explained of the estimation of sapling density of all species than of 

commercial species is probably due to the similarity of non-commercial species and commercial species 

of hardwood. Indeed, all the non-commercial species are hardwood species, and they are known to be 

harder than softwood species to differentiate via LiDAR (Collins et al. 2004) and satellite images (Weigel 

and Randolph 2013). 

The models using spectral variables along with environmental variables yield the lowest accuracy and 

pseudo R- squared, meaning that LiDAR is more accurate than images to estimate regeneration characte-

ristics such as sapling density. LiDAR is known to be better than images to penetrate through the canopy 

(Pesonen et al. 2008). Coops et al. 2004 also found that crown area was better estimated using LiDAR 

than multispectral images. Furthermore, LiDAR is known to be more accurate than satellite images to 

estimate density (Pearse et al. 2018), biomass (Hyde et al. 2006) and basal area (Hudak et al. 2006) of 

overstory trees. 

Even if the accuracy of the models with both sensors are similar to the one using LiDAR for both species 

groups, the variance explained is higher when using both sensors to estimate commercial species. 

Furthermore, the green band was selected  in  the  model  estimating  sapling  density of commercial 

species with both sensors where none of the spectral variables were selected when estimating all 

species. The images are known to be more accurate than LiDAR to differentiate species (Zald et al. 2014). 

Moreover, the green band is better than the other bands to differentiate between over- and understory 

(Landry et al. 2018). 

Basal area is an important variable in either case, estimation of sapling density of all species and com-

mercial species and the use of both or one or the other sensors, predictions of sapling density of all 

species are higher when basal area is low. Under a dense canopy, there is a greater competition for the 

above and belowground resources, therefor sapling density is lower (Lundqvist and Fridman, 1996; No-

let et al. 2008). 

When the value of higher percentiles of height distribution is low it means that the points are mainly co-

ming from low vegetation (Means, 2000; Wasser et al. 2013; Watt and Watt, 2013), which can represent 

a higher density of sapling and a sparse canopy. On the other hand, a higher proportion of points above 

2 m yields higher sapling density of all species, sapling corresponds to a tree with a height greater than 

1.3 m, thus a higher proportion of points above 2 m means that there is a greater proportion of vege-

tation in the sapling and over- story strata. 
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Impact of canopy cover 

Models using only spectral and environmental variables are more affected by canopy cover than the 

ones using both sensors or only LiDAR and environmental variables. When the canopy cover increases, 

the accuracy of the models decreases, although only the model estimating sapling density of all species 

yields a significantly higher estimation when canopy cover is very high. LiDAR is better than images to 

penetrate through the cano- py (Pesonen et al. 2008). Moreover, satellite images are more related to 

canopy cover characteristics than of height (Hudak et al. 2006) explaining the sensibility of Sentitnel-2 

to canopy cover. 

CONCLUSION 

As a result of this project, we can conclude that LiDAR only is able to estimate sapling density of all 

species and commercial species. Sentinel-2 images increase the variance explained when estimating 

sapling density of commercial species but not the accuracy. Moreover, LiDAR as for the integration of 

both sensors is less impacted by canopy cover than Sentinel-2 images. However, LiDAR coverage will 

only be renewed each 10 years in New Brunswick which can lead to false information about regenera-

tion if a treatment is done between these cycles. Nevertheless, it is possible to generate points-cloud 

using other sensors like unmanned aerial vehicle (UAV). To increase the accuracy and the variance ex-

plained by the model, we suggest the use of leaf-off LiDAR and the integration of leaf-off LiDAR and sa-

tellite images from different timing in the phenology season. We also suggest to try using satellite 

images with an higher resolution than Sentinel-2 images. 
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