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• The determination of tree quality (acceptable growing stock / unac-

ceptable growing stock) is important for silviculture decisions as well 

as for predictions of growth. 

 

• We developed a model to predict tree quality (AGS/UGS) of hardwood 

species when tree form and risk are unknown, based on ordinary for-

est inventory and remote sensing variables.  

 

• Dendrometric and environmental parameters at the tree level were 

the best variables to explain variance and showed higher accuracy 

prediction compared to the LiDAR and image metrics at the plot level. 

 

• Results obtained from remote sensing models were more correlated 

to LiDAR metrics. The addition of spectral and environmental varia-

bles on average, decreased the accuracy of purely dendrometric   

models. 

 INTRODUCTION 

Decisions on how to manage a forest over time are often done using in-

complete information (Eyvindson and Kangas, 2018). In particular, the 

knowledge of tree quality and vigour is universally lacking although it is crucial to 

sound forest management.  

Modern growth and yield models have been used to alleviate some of 

those shortfalls but offer no replacement for the ability to identify low quality 

and vigorous stems which are expected to decline before the next harvesting 

cycle, and to determine the distribution of wood products (Power and Havreljuk, 

2016).  



 

Considerable attention must be invested on assessing tree quality, health and vigour in order to de-

termine the right silvicultural regimes. Tree health is an important element of quality and grade but very 

few jurisdictions systematically characterize trees for those features in their inventory. Vigour takes into 

account tree health as well as competition for light and other resources.   

 

Tree classification systems such as the ABCD system (Ontario Ministry of Natural Resources 

(OMNR), 2004); the MSCR system (Boulet, 2007) and the acceptable growing stock / unacceptable grow-

ing stock (AGS/UGS) system (OMNR, 2004) have been developed to take into consideration various de-

fects that commonly occur on hardwood trees and impact current and future growing stock (Castle et al., 

2017). 

 

For the same reasons, the Northern Hardwoods Research Institute (NHRI) developed a tree classifi-

cation system based on the integration of metrics for both stem form and vigor (Pelletier et al., 2013). 

The system was also designed to be compatible with other main stream stem classification approaches 

such as AGS/UGS.  

 

Unfortunately, and despite its obvious importance, the inclusion of tree quality measures are not 

universally adopted in many jurisdictions. Our study aims to develop an adaptable model to predict tree 

quality (AGS/UGS) of hardwood species in absence of tree risk (vigor) and form variables using standard 

forest inventory and remote sensing variables of stand conditions in order to provide useful information 

about tree quality to make long-term management decisions. We attempted to predict: (1)  tree form; (2) 

tree risk and (3) (AGS/UGS) of hardwood species.  

METHODOLOGY 

Data 

 

We used two databases: data1 (446plots/2498 trees) obtained from J. D. Irving Limited and an NHRI 

database, data2 (637 plots/5683 trees) collected during block planning and other operations. All sampled 

plots (trees with DBH ≥ 10cm) are in the format of Continuous Land Inventory (CLI), and are situated in 

northern New Brunswick, Canada. 

Two categories of variables were used: calculated dendrometric with available environmental varia-

bles; and estimated variables using remote sensing methods (sentinel 2 images and LiDAR). 
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METHODOLOGY 

 

1. The following dendrometric and environmental variables were obtained or generated for each 

tree and/or plot levels for data1 and data2: 

 Individual tree level: species, DBH (cm), height (m), gross merchantable volume-GMV (m3/

ha), ratio height/DBH-Ht_DBH (cm), tree form , tree risk and acceptable growing stock-AGS. 

 Plot/ stand level: average height (m), average DBH (cm), elevation (m), average gross mer-

chantable volume-GMV (m3/ha), quadratic mean diameter-QMD (cm), density (trees/ha), 

basal area-BA (m2/ha), percent of acceptable growing stock-AGS (%), percent of form class 

(% good, % average, % poor), percent of risk class (%good, % poor), aspect, topographic in-

dex-TPI, forest unit name-FUNA, soil type, depth water (m), biomass growth index-BGI 

(FORUS Research, 2016; Hennigar et al., 2016), ecoregion, ecodistrict and ecosite (Hennigar 

et al., 2016).  

2. The remote sensing variables were generated at the plot levels for data2 : 

 Sentinel images 

We used four bands (blue, green, red and near-infrared) and the ARVI, EVI, NDVI and VARI 

index from Sentinel-3 images (10 m x 10 m resolution) obtained in May 2018, July 2018 and 

September 2018. 

 LiDAR 

LiDAR (ALS) data were acquired during the summers of 2017 and 2018 and calculated using 

the package lidR in R. 56 variables were obtained using this package. 

 

Data analysis 

 

Data was analyzed at two levels: tree level and plot level. 

 Tree level (qualitative response variable) 

Data1 was used to predict tree quality.  

 

 Form variables were grouped into 3 categories (good: F1, F2; average: F5, F6, F7, F8 and poor: F3, 

F4) , and risk variables into (good: R1, R2; poor: R3, R4) and AGS/UGS into (1: AGS; 0: UGS), 

 A non-parametric regression model (random forest) was ran with all dendrometric and environ-

mental variables. Then we selected the important variables using the VSURF package in R to be 

analyzed once again. We thus calculated the out the bag error (OOB), and we generated the con-

fusion matrix to estimate the accuracy of the model using the randomForest package in R. 



 

Page  4 

      

 Plot level (quantitative response variable) 

Data2 was used to predict tree quality at the plot level,  

 

 The percentage of the 3 form categories (% good, % average, % poor) was calculated as well as for 

the 2 risk categories (% good, % poor) and the percent of acceptable growing stock (% AGS), 

 A non-parametric model, random forest was run with all dendrometric, environmental and remote 

sensing variables (Lidar and spectral variables (bands and vegetation index)) first, then we selected 

the important variables using the VSURF package in R to be analyzed once again, 

 Relative Root mean square error (RMSE) and pseudo R-square values were determined respectively 

using the randomForest package. 

 

All statistical analyses were performed using the R 3.5.1 software (R Core Team, 2018). 

Environmental variables were generated using QGIS 3.8.1 software (GIS, 2018). 

 

 

 

For the tree level, a confusion matrix and model fit statistics derived from data1 are presented in 

Table 1. 

The random forest model used to predict the tree quality demonstrated excellent prediction, as 

evidenced by an accuracy of 76% for tree form, 82% for risk and 75% for AGS models. 

 For the tree form category model, only 5 dendrometric variables (DBH, species, QMD, FUNA, 

GMV) and one environmental variable (soil) were selected to better explain the variance and predict 

more accurately form class. The precision of the model was very high, as shown by its error rate-OOB 

(20% accuracy rate (76%) and confusion matrix (Table 1). 

The variables selected for Form models were kept for Risk models and AGS models but 9 dendro-

metric variables (DBH, Height, ratio Ht_DBH, species, BA, QMD, Density, GMV, and FUNA) and 8 environ-

mental variables (Ecoregion, Ecodistrict, Ecosite, BGI, Soil, Depth to water, Aspect and Topographic index 

TPI) were added.  Predictions of tree risk and AGS are higher, with respectively an error rate OOB 

(17.11% and 21.18%), accuracy rate (82% and 75%) and confusion matrix (Table 1). 

However, when using data2 in order to predict the percent of the 3 categories of form (% good, % 

average, % poor), the 2 categories of risk (% good, % poor) and the percent of acceptable growing stock 

(% AGS) using dendrometric, environmental and remote sensing variables, the results obtained with all 

models are very low and did not explain well the variance.  

 

RESULTS  
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Table 1. Candidate models, variables selected, error rate (OOB), accuracy and confusion matrix of models   
estimating from, risk and AGS class using dendrometric and environmental variables.  

The relative Root mean square error (RSME) for the 2 form categories for example (% good, % av-

erage) is 17% and 17.3% (Table 2) respectively and the pseudo R-squared of each category is 4% for good 

class and 11% for average class (Table 2). Moreover, the others selected models of the good risk, poor 

risk and AGS support the similar low results, with respectively 13 % and 23% of RSME for both risk mod-

els and AGS model and with pseudo R-squared inferior or equal to 11% (Table 2). 

The relative errors of the models using all variables combined or selected variables did not record 

any variation. However, the pseudo R-squared decrease when we used selected variables given by the 

VSURF package (Table 2).Contrary with the form model, selected variables improved the ability of the 

model to predict good risk, poor risk and AGS, even if the pseudo R-squared did not exceed 11% (Table 

2).  Because of the low values of pseudo R-squared and the high relative error given by the RMSE for all 

the models, we did not conduct the prediction and produced a confusion matrix. 

Table 2. Candidate models, variables selected, relative RMSE (%) and pseudo R-squared of models estimating 
from, risk and AGS class using LiDAR, spectral, environmental and  dendrometric variables.  
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DISCUSSION 

We undertook the development of a tree quality model to assess the acceptable growing stock / 

unacceptable growing stock (AGS/UGS) via the prediction of form and risk using various variables. 

The results of this study highlighted that the dendrometric and environmental parameters at the 

tree level were the best variables to explain variance and present a higher accuracy prediction com-

pared to the LiDAR and images metrics at the plot level. 

Past works have shown that risk, form and AGS/UGS are very related to dendrometric variables 

(Castle et al., 2017; Cecil-Cockwell and Caspersen 2015; Pothier et al., 2013). This could be explained by 

the fact that the NHRI tree classification systems is based on some dendrometric variables such DBH, 

height, species, and evaluate a wide range of attributes that have implications on hardwood product po-

tential such the GMV variable. 

Moreover, environmental variables such as soil, ecoregion, ecosite, BGI were present in the 3 ob-

tained models. They have been shown to be important tree-level attributes for predicting tree quality. 

This is consistent with previous studies of Baral et al. (2016), which indicated that site quality is also ex-

pected to have a role in influencing stem quality and trees were less likely to have defects on higher 

quality sites. 

The implications of remote sensing parameters on stem quality have still not been commonly eval-

uated. However, different forest characteristics such as: aboveground biomass (Steininger, 2000), basal 

area (Means et al., 1999), tree crown diameter (Popescu et al., 2003), canopy height (Simard et al., 

2011) and canopy structure (Coops et al., 2007) have been successfully derived from satellite images 

and LiDAR. 

Furthermore, forest characteristics derived from remote sensing are mostly related to overstory 

due to the interference of canopy foliage on the detection of understory vegetation. 

Landry et al. (unpublished , 2020) indicate that overstory density (Maltamo et al., 2005; Falkowski 

et al., 2009; Latifi et al., 2015; Campbell et al., 2018), height (Wing et al., 2012), composition (Naesset, 

2005) and canopy cover (Morsdorf et al., 2010) decrease the estimation accuracy of overstory tree char-

acteristics. In our study, the integration of different remote sensing parameters has been shown to be 

less successful in assessments of tree quality.  

Results obtained from remote sensing models were more correlated with LiDAR metrics. Spectral 

and environmental variables decreased the accuracy of these models. LiDAR is better than images to 

penetrate through the canopy (Pesonen et al., 2008). Besides, satellite images are more related to cano-

py cover characteristics than of height (Hudak et al., 2006) highlighting the limitation of Sentitnel-2 im-

agery.  

According to Pearse et al. 2018, Hyde et al. 2006 and Hudak et al. 2006, LiDAR is known to be 

more accurate than satellite images in estimating forest metrics such as density, biomass and basal area. 
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CONCLUSION 

Few studies have dealt with the question of stem quality from dendrometric and remote sensing 

data. Results from this study confirmed that dendrometric models have a wide range on stem quality. 

Explaining differences in stem form, risk and AGS among species is challenging. Remote sensing parame-

ters in previous studies have shown a success in predicting other tree  characteristics. Models that in-

cluded these parameters as covariates demonstrated relatively low precision and predictive incapability, 

indicating that dendrometric parameters are more considerable and accurate in predicting stem quality 

classes at the tree level.  

Wall-to-wall acquisition of airborne LiDAR took place between 2013 and 2018 in New Brunswick. It 

is unknown when and if a new cycle will occur in the near future. 

In conclusion, this study suggests a new model to predict form and risk class that can be used 

when the variables were not captured during field inventories, but more is needed to increase accuracy 

and reduce variance. For the remote sensing model, we suggest to try using satellite images with a high-

er resolution than Sentinel-2 images, using remote sensing techniques at the tree level and increasing 

the sample sizes in order to improve the power of the statistical tests.  
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